Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives

نویسندگان

  • David S. Reichmuth
  • Gabriela S. Chirica
  • Brian J. Kirby
چکیده

A zwitterionic additive is used to improve the performance of electrokinetic micropumps (EK pumps), which use voltage applied across a porous matrix to generate electroosmotic pressure and flow in microfluidic systems. Modeling of EK pump systems predicts that the additive, trimethylammoniopropane sulfonate (TMAPS), will result in up to a 3.3-fold increase in pumping efficiency and up to a 2.5-fold increase in the generated pressure. These predictive relations comparewell with experimental results for flow, pressure and efficiency. With these improvements, pressures up to 156 kPa/V (22 psi/V) and efficiency up to 5.6% are demonstrated. Similar improvements can be expected from a wide range of zwitterionic species that exhibit large dipole moments and positive linear dielectric increments. These improvements lead to a reduction involtage and power requirements and will facilitate miniaturization of micro-total-analysis systems (mTAS) and microfluidically driven actuators. Published by Elsevier Science B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Method for Determination of Amoxicillin, Ampicillin, Sulfamethoxazole, and Sulfacetamide in Animal Feed by Micellar Electrokinetic Capillary Chromatography and Comparison with High-Performance Liquid Chromatography

Antibiotics as additives in animal feedstuffs are forbidden in many countries in the world, but they are still abused. A micellar electrokinetic capillary chromatography method was performed at 25 C and 30 kV (under pressure 15 mbar) using 25 mmol dm phosphate buffer (pH = 8.0) containing 70 mmol dm sodium dodecysulfate (SDS) and 10 % (volume fraction) methanol as the background electrolyte fo...

متن کامل

MEMS-based micropumps in drug delivery and biomedical applications

This paper briefly overviews progress on the development of MEMS-based micropumps and their applications in drug delivery and other iomedical applications such as micrototal analysis systems ( TAS) or lab-on-a-chip and point of care testing systems (POCT). The focus of the eview is to present key features of micropumps such as actuation methods, working principles, construction, fabrication met...

متن کامل

Effects of ammonioalkyl sulfonate internal salts on electrokinetic micropump performance and reversed-phase high-performance liquid chromatographic separations.

Ammonioalkyl sulfonate internal salts are explored owing to their potential for improving electrokinetic pumps used to perform miniaturized HPLC separations. The internal salts investigated can be added at high molarity since they are net-neutral, and furthermore show potential for increasing electroosmotic pumping owing to their large positive dielectric increment. Streaming potential measurem...

متن کامل

Electrokinetic and Sediment Remediation in Microbial Fuel Cell (RESEARCH NOTE)

Recently developed man-made structures have caused environmental pollutions, and unfortunately, in spite of the deteriorating affairs and repeated warnings by scientists and experts, the degree of contamination is increasing considerably. One of the natural sources undergoing changes is the coasts. It is mainly due to human activities which have led to a change in the quality and quantity of se...

متن کامل

Stabilization of Filter Cake and its Leaching Behaviour: A Case Study with Cementitious and Soluble Phosphate Additives

Filter cake is one of the main waste products of zinc processing industries and it contains a high amount of toxic heavy metals. In this research in order to reduce heavy metals leachability in filter cake, Portland cement, natural pozzolan, diammonium phosphate (DAP), triple superphosphate (TSP), lime, zinc oxide and ground granulated blast furnace slag (GGBFS) have been used. This research’s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003